If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(1-x^2)+3x=0
We multiply parentheses
-2x^2+3x+2=0
a = -2; b = 3; c = +2;
Δ = b2-4ac
Δ = 32-4·(-2)·2
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-5}{2*-2}=\frac{-8}{-4} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+5}{2*-2}=\frac{2}{-4} =-1/2 $
| 20x/22=4672 | | 20-4x=2x-28 | | x*0.75=3125 | | e^2+9=135 | | x^2(x^2-31)=180 | | 11x+25=20 | | 12x^2-11=-9x | | x=50-60/70 | | -2x-18=9 | | 3t-5=6t-1 | | 9(2x-3)=21x+4+6x | | 1=2/3(10x+15) | | 5^(x-1)=17 | | 5^x-1=17 | | 4x+7=3-+14 | | 3^4t=16 | | 5p(-6)=60 | | -13x+7-3x=3x-73-3x | | 2(1-x^2)+x=0 | | 4x-71=69 | | (9x-7)+((7x-3)=180 | | 4z-28=116 | | 9=0.4m+3 | | 6y-129=105 | | (9e-3)+90+(8e+8)=180 | | .5(8x-6)=x-12 | | j^2=16 | | 10n+19=12n+5 | | -9r+7=-38 | | m+14/5=6 | | x/12-7=1 | | 5x-2=3.125 |